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Abstract
In this study, di(2,6-dimethylphenol) (Di-DMP), di(2,6-diisopropylphenol) (Di-DIP, dipropofol) and di(2,6-di-t-
butylphenol) (Di-DTP) were synthesized by the reaction of monomeric phenol derivatives with catalytic CuCl(OH).
TMEDA and Na2S2O4. Their antioxidant capacity and radical scavenging activity were examined using different in vitro
methodologies such as 1,1-diphenyl-2-picryl-hydrazyl (DPPH·) free radical scavenging, 2,20-azino-bis(3-ethylbenzthiazoline-
6-sulfonic acid) (ABTS) radical scavenging activity, total antioxidant activity by ferric thiocyanate, total reducing power by
potassium ferricyanide reduction method, superoxide anion radical scavenging, hydrogen peroxide scavenging and ferrous
ions chelating activities.

Keywords: Propofol, monophenol, diphenol, antioxidant activity, dimeric form, radical scavenging

Abbreviations: di(2,6-dimethylphenol, Di-DMP; di(2,6-diisopropylphenol), Di-DIP, dipropofol; di(2,6-di-t-butylphenol),
Di-DTP; 1,1-diphenyl-2-picryl-hydrazyl, DPPH·; 2,20-azino-bis/3-ethylbezthiazoline-b-sulfonic acid, ABTS; butylated
hydroxytoluene, BHT; butylated hydroxyanisole, BHA

Introduction

Although oxygen is a prerequisite to life, at

concentrations beyond the physiological limits it may

be hazardous to cells [1]. Especially, oxidation of

lipids, which is the main cause of quality deterioration

in many food and pharmaceutical systems, may lead to

off-flavours and formation of toxic compounds and

oxidized lipids may lower the quality and nutritional

or pharmaceutical value of foods. Furthermore, lipid

oxidation is also associated with aging, membrane

damage, heart disease and cancer [2,3]. Alternatively,

the inhibition of membrane lipid peroxidation has

been shown to have a protective effect in the initiation

and promotion of certain cancers and in the side

effects of several cytostatic agents [4].

Free radicals are chemically active atoms or

molecular fragments that have a charge due to an

excess or deficient number of electrons. Free radicals

containing oxygen are known as reactive oxygen

species (ROS) and are the most biologically significant

free radicals. Oxidative stress is initiated by ROS, such

as superoxide anion radicals (O2
·–), hydroxyl radicals

(OH·) and non free-radical species such as H2O2 and

singlet oxygen (1O2). These radicals are formed by a

one electron reduction process of molecular oxygen

(O2). These various forms of activated oxygen are

exacerbating factors in cellular injury and aging

process [5–7] and are linked to oxidation of proteins,

DNA, and lipids [1].

At normal physiological concentrations ROS are

required for cellular activities. But, at higher

concentrations, they can be toxic leading to oxidative

stress. The excessive production of ROS from

endogenous and exogenous sources disrupts many

functions in living cells [8]. The main cellular

sources of ROS in the lung include not only

neutrophils, eosinophils and alveolar macrophages

[9], but also alveolar epithelial cells, bronchial

epithelial cells and endothelial cells [10,11]. The

generation of ROS in the lungs is enhanced after

exposure to numerous exogenous chemical and
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physical agents, which include mineral dusts, ozone,

nitrogen oxides, ultraviolet and ionizing radiation

[12,13] and tobacco smoke [14]. ROS can easily

initiate the peroxidation of membrane lipids,

depletion of nicotinamide nucleotides, rises in

intracellular calcium ions, cytoskeleton disruption

and DNA damage [1,15]. However, they are

removed by antioxidant defence mechanisms.

There is a balance between the generation of ROS

and inactivation of ROS by the antioxidant system

in organisms. Under pathological conditions, ROS

are overproduced and result in oxidative stress.

ROS are formed when endogenous antioxidant

defences are inadequate. The imbalance between

ROS and antioxidant defence mechanisms leads to

oxidative modification in cellular membrane or

intracellular molecules [16–18].

Antioxidants may be defined as compounds that

inhibit or delay the oxidation of other molecules by

inhibiting the initiation or propagation of oxidizing

chain reactions. Antioxidants, in general, are import-

ant not only for food preservation but also for the

defence of the body against oxidative stress [19–20].

They can also protect the human body from free

radicals and ROS effects and retard the progress of

many chronic diseases as well as lipid peroxidation

[21–25] which is also associated with a number of

diseases such as aging, membrane damage, heart

disease and cancer [2].

Although synthetic antioxidants such as butylated

hydroxytoluene (BHT), butylated hydroxyanisole

(BHA) and tert-butylhydroquinone (TBHQ) as well

as propyl gallate (PG) have widely been used in

retarding lipid peroxidation, their safety has recently

been questioned due to toxicity e.g. liver damage and

possible carcinogenicity [18,26,27]. Thus, develop-

ment of safer antioxidants from other materials that

can replace these antioxidants has been of interest. We

suggested that Di-DMP, Di-DIP and Di-DTP were

safer than the above mentioned antioxidants.

Especially propofol, the monomeric form of Di-DIP,

which has a wide usage. DIP is a hypnotic intravenous

agent with in vivo antioxidant and radical scavenging

properties and commonly used as a sedative for

critically ill patients [28]. In another study, Di-DIP,

dipropofol, showed a bactericidal effect against gram-

positive bacteria, including Staphylococcus aureus,

Enterococcus faecium and Escherichia coli. Ogata and

co-workers showed that some of the dimeric phenol

derivatives had a stronger in vivo antioxidant activity

by thiobarbituric acid-reactive substances than related

monomers [29].

As far as our literature survey could ascertain, no

information is available on Di-DMP, Di-DIP and Di-

DTP for their in vitro total antioxidant activity,

reducing power, DPPH· free radical scavenging,

ABTS radical scavenging, superoxide anion radical

scavenging, hydrogen peroxide scavenging and metal

chelating activities. The objectives of this study were

to investigate these properties of Di-DMP, Di-DIP

and Di-DTP compared with the same concentration

of commercial and standard antioxidant and radical

scavengers such as BHA, BHT, a-tocopherol and

trolox.

Materials and methods

Chemicals

DMP, DIP, DTP, ABTS, BHA, BHT, nitroblue

tetrazolium (NBT), DPPH·, 3-(2-pyridyl)-5,6-bis (4-

phenyl-sulfonic acid)-1,2,4-triazine (Ferrozine), lino-

leic acid, a-tocopherol, polyoxyethylenesorbitan

monolaurate (Tween-20) and trichloroacetic acid

(TCA) were obtained from Sigma-Aldrich GmbH,

Sternheim, Germany. Ammonium thiocyanate was

from Merck and all other chemicals used were of

analytical grade and obtained from either Sigma-

Aldrich or Merck.

Synthesis of dimeric phenols

In this study, Di-DMP, Di-DIP and Di-DTP were

synthesized by methods described in the literature

[29,30].

Synthesis of di(2,6-dimethylphenol) (Di-DMP). DMP

(5.0 g, 40.93 mmol) was dissolved in CH2Cl2
(100 mL) and mixed with CuCl(OH)·TMEDA

(160 mg, 0.34 mmol) at room temperature at 24 h.

The reaction product extracted with AcOEt and

evaporated. The reactant was dissolved in ethanol,

Na2S2O4 (10.0 g, 57.47 mmol) added and the mixture

was heated for 2 h. The precipitate was collected and

crystallized from hexane to give di(2,6-

dimethylphenol) (3.62 g, 73%) as a white solid. 1H-

NMR (400 MHz, CDCl3, d, ppm): 7.16 (s, 4H,

Haryl), 4.60 (s, 2H, OH), 2.30 (s, 12H, CH3). 13C-

NMR (100 MHz, CDCl3, d, ppm): 151.47, 133.55,

127.22, 123.36, 16.30. Anal. Calc. for C16H18O2: C,

79.31; H, 7.49. Found: C, 79.17; H, 7.67%.

Synthesis of di(2,6-diisopropylphenol) (Di-DIP,

Dipropofol). Propofol (4.0 g, 22.47 mmol) was

dissolved in CH2Cl2 (40 mL) and stirred with

CuCl(OH)·TMEDA (64 mg, 0.14 mmol) for 24 h

at room temperature. The reaction product was

extracted with AcOEt and the solvent was evaporated

to afford a resultant residue which was dissolved in

ethanol, and heated with Na2S2O4 (6.0 g,

34.48 mmol) for 20 min. The separated precipitate

was collected and crystallized from hexane to give the

dimeric propofol, dipropofol (2.94 g, 74%) as a white

solid. 1H-NMR (400 MHz, CDCl3, d, ppm): 7.33 (s,

4H, Haryl), 4.99 (m, 2H, OH), 3.35 (h, J ¼ 6.8 Hz,
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4H, CH), 1.46 (d, J ¼ 6.8 Hz, 12H, CH3). 13C-NMR

(100 MHz, CDCl3, d, ppm): 149.46, 135.13, 134.19,

122.74, 27.77, 23.21. Anal. Calc. for C24H34O2: C,

81.31; H, 9.67. Found: C, 79.62; H, 9.70%.

Synthesis of di(2,6-di-t-butylphenol) (Di-DTP). DTP

(5.0 g, 24.27 mg) was dissolved in CH2Cl2 (100 mL)

and stirred with CuCl(OH)·TMEDA (160 mg,

0.34 mmol) for 24 h at room temperature. The

reaction product was extracted with AcOEt. After

removal of solvent, the reactant was dissolved in

ethanol, and heated with Na2S2O4 (6.0 g,

34.48 mmol) for 2 h. The precipitate was collected

and crystallized from hexane to give di(2,6-di-t-

butylphenol) (3.58 g, 72%) as a white solid. 1H-NMR

(400 MHz, CDCl3, d, ppm): 7.33 (s, 4H, Haryl), 5.22

(s, 2H, OH), 1.52 (s, 36H, CH3). 13C-NMR

(100 MHz, CDCl3, d, ppm): 153.06, 136.15,

134.18, 124.38, 34.70, 30.61. Anal. Calc. for

C28H42O2: C, 81.90; H, 10.31. Found: C, 81.50; H,

10.27%.

Total antioxidant activity determination by ferric

thiocyanate method. The antioxidant activity of Di-

DMP, Di-DIP and Di-DTP and standards was

determined according to the ferric thiocyanate

method [31] as described by Gülçin [32]. For stock

solutions, 10 mg of Di-DMP, Di-DIP and Di-DTP

was dissolved in 10 mL ethanol. Then, the solution

which contains the same concentration of stock Di-

DMP, Di-DIP and Di-DTP solution or standard

samples (from 15mg/mL to 45mg/mL) in sodium

phosphate buffer (0.04 M, pH 7.0, 2.5 mL) was added

to linoleic acid emulsion in sodium phosphate buffer

(0.04 M, pH 7.0, 2.5 mL). 5 mL of the linoleic acid

emulsion was prepared by mixing and homogenizing

15.5mL of linoleic acid, 17.5 mg of Tween-20 as

emulsifier, and 5 mL phosphate buffer (pH 7.0).

Alternatively, 5 mL control was composed of 2.5 mL

of linoleic acid emulsion and 2.5 mL, 0.04 M sodium

phosphate buffer (pH 7.0). The mixed solution

(5 mL) was incubated at 378C in a polyethylene

flask. The peroxide level was determined by reading

the absorbance at 500 nm in a spectrophotometer

(Shimadzu, UV-1208 UV-VIS Spectrophotometer,

Japan, Cat No: 2006-67603-93, Serial No: A1012

3300010YS) after reaction with FeCl2 and

thiocyanate at intervals during the incubation.

During the linoleic acid oxidation, peroxides are

formed and that leads to oxidation of Fe2þ to Fe3þ.

The latter ions form a complex with ammonium

thiocyanate and this complex has a maximum

absorbance at 500 nm. This step was repeated every

5 h until the control reached its maximum absorbance

value. The percentage inhibition values were

calculated at this point (30 h). High absorbance

indicates high linoleic acid emulsion peroxidation.

The solutions without Di-DMP, Di-DIP and Di-DTP

were used as blank samples. Total antioxidant activity

determination was performed in triplicate. The

percentage inhibition of lipid peroxidation in the

linoleic acid emulsion was calculated by the following

equation:

Inhibition of lipid peroxidation ð%Þ ¼ 100

2
AS

AC

£ 100

� �

in here AC is the absorbance of the control reaction

which contains only linoleic acid emulsion and sodium

phosphate buffer and AS is the absorbance in

the presence of the test sample Di-DMP, Di-DIP and

Di-DTP or standard compounds [33].

Total reduction capability

The samples prepared for the ferric thiocyanate

method above were used for this and the other assays.

The reducing power of Di-DMP, Di-DIP and Di-

DTP was determined by the method of Oyaizu [34]

with slight modification [35]. Different concentrations

of Di-DMP, Di-DIP and Di-DTP (15–45mg/mL) in

1 mL of distilled water were mixed with phosphate

buffer (2.5 mL, 0.2 M, pH 6.6) and potassium

ferricyanide [K3Fe(CN)6] (2.5 mL, 1%). The mixture

was incubated at 508C for 20 min. Aliquots (2.5 mL)

of trichloroacetic acid (10%) were added to the

mixture. The supernatant (2.5 mL) was mixed with

distilled water (2.5 mL) and FeCl3 (0.5 mL, 0.1%),

and the absorbance was measured at 700 nm in a

spectrophotometer. Increased absorbance of the

reaction mixture indicates an increase in reduction

capability.

Chelating activity on ferrous ions (Fe21)

The chelating of ferrous ions by Di-DMP, Di-DIP and

Di-DTP and standards was estimated by the method

of Dinis et al. [36]. The reaction was performed in an

aqueous medium. Briefly, Di-DMP, Di-DIP and Di-

DTP (15mg/mL) in 0.4 mL was added to a solution of

2 mM FeCl2 (0.2 mL). The reaction was initiated by

the addition of 5 mM ferrozine (0.4 mL) and the total

volume was adjusted to 4 mL of ethanol. The mixture

was then shaken vigorously, left at room temperature

for ten min, and its absorbance measured spectro-

photometrically at 562 nm. The percentage of

inhibition of ferrozine-Fe2þ complex formation was

calculated using the formula below:

Ferrous ions chelating effect ð%Þ ¼
AC 2 AS

AC

� �

£ 100
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where AC is the absorbance of control and AS is the

absorbance in the presence of Di-DMP, Di-DIP

and Di-DTP or standards. The control contains FeCl2
and ferrozine, the complex formation molecules

[37,38].

Hydrogen peroxide scavenging activity

The hydrogen peroxide scavenging assay was carried

out following the procedure of Ruch et al. [39]. For

this purpose, a solution of H2O2 (43 mM) was

prepared in phosphate buffer (0.1 M, pH 7.4). Di-

DMP, Di-DIP and Di-DTP at 15mg/mL concen-

tration in 3.4 mL phosphate buffer were added to

0.6 mL of H2O2 solution (0.6 mL, 43 mM). The

absorbance of the reaction mixture was recorded at

230 nm. A blank solution contained the phosphate

buffer without H2O2. The concentration of hydrogen

peroxide in the assay medium was determined using a

standard curve (r 2:0.9895):

Absorbance ¼ 0:038 £ ½H2O2� þ 0:4397

The percentage of H2O2 scavenging by Di-DMP, Di-

DIP and Di-DTP and standard compounds was

calculated using the following equation:

H2O2 scavenging effect ð%Þ ¼
AC 2 AS

AC

� �

£ 100

where AC is the absorbance of the control and AS is the

absorbance in the presence of the test sample Di-

DMP, Di-DIP, Di-DTP or standards [40].

Radical scavenging activity

The total free radical scavenging capacity of the tested

compounds was determined and compared to that of

BHA, BHT, a-tocopherol and trolox using the DPPH,

ABTS and superoxide anion radical scavenging

methods.

DPPH free radical scavenging activity. The

methodology of Blois [41] previously described by

Gülçin [42] was used with slight modifications in

order to assess the DPPH· free radical scavenging

capacity of Di-DMP, Di-DIP and Di-DTP, wherein

the bleaching rate of a stable free radical, DPPH· is

monitored at a characteristic wavelength in the

presence of the sample. In its radical form, DPPH·

absorbs at 517 nm, but upon reduction by an

antioxidant or a radical species its absorption

decreases. Briefly, 0.1 mM solution of DPPH· was

prepared in ethanol and 0.5 mL of this solution was

added to 1.5 mL of Di-DMP, Di-DIP and Di-DTP

solution in ethanol at different concentrations

(15–45mg/mL). These solutions were vortexed

thoroughly and incubated in the dark. Half an hour

later, the absorbance was measured at 517 nm against

blank samples. Lower absorbance of the reaction

mixture indicates higher DPPH· free radical

scavenging activity. A standard curve was prepared

using different concentrations of DPPH·. The

DPPH· scavenging capacity was expressed as mM

in the reaction medium and calculated from the

calibration curve determined by linear regression

(r 2:0.9845):

Absorbance ¼ 9:692 £ ½DPPH·� þ 0:215

The capability to scavenge the DPPH· radical was

calculated using the following equation:

DPPH·scavenging effect ð%Þ ¼
AC 2 AS

AC

� �

£ 100

where AC is the absorbance of the control which

contains 0.5 mL DPPH· solution and AS is the

absorbance in the presence of Di-DMP, Di-DIP and

Di-DTP [43].

ABTS radical cation decolorization assay. The

spectrophotometric analysis of ABTSzþ radical

scavenging activity was determined according to the

method of Re et al. [44] described previously by

Gülçin [45]. This method is based on the ability of

antioxidants to quench the long-lived ABTS radical

cation, a blue/green chromophore with characteristic

absorption at 734 nm, in comparison to that of BHA,

BHT, a-tocopherol and trolox (a water-soluble a-

tocopherol analogue). The ABTSzþ was produced by

reacting 2 mM ABTS in H2O with 2.45 mM

potassium persulfate (K2S2O8), in the dark at room

temperature for 4 h. Before usage, the ABTSzþ

solution was diluted to get an absorbance of

0.750 ^ 0.025 at 734 nm with phosphate buffer

(0.1 M, pH 7.4) before use. Then, 1 ml of ABTSzþ

solution was added to 3 mL of Di-DMP, Di-DIP

and Di-DTP solution in ethanol at different

concentrations (15–45mg/mL). After 30 min, the

percentage inhibition at 734 nm was calculated for

each concentration relative to a blank absorbance.

Solvent blanks were run in each assay. The extent of

decolorization was calculated as percentage reduction

of absorbance. For preparation of a standard curve,

different concentrations of ABTSzþ were used. The

ABTSzþ concentration (mM) in the reaction medium

was calculated from the following calibration curve,

determined by linear regression (r 2:0.9841):

Absorbance ¼ 4:6788 £ ½ABTS·þ� þ 0:199
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The scavenging capability of the ABTSzþ radical was

calculated using the following equation:

ABTS·þ scavenging effect ð%Þ ¼
AC 2 AS

AC

� �

£ 100

where in AC is the initial concentration of ABTSzþ and

AS is absorbance of the remaining concentration of

ABTSzþ in the presence of Di-DMP, Di-DIP and Di-

DTP [18,32].

Superoxide anion radical scavenging activity. Superoxide

radicals were generated by the method of

Beauchamp and Fridovich [45] described by

Zhishen et al. [46] with slight modification.

Superoxide radicals were generated in riboflavin,

methionine, illuminate and assayed by the reduction

of nitro blue tetrazolium (NBT) to form blue

formazan. All solutions were prepared in 0.05 M

phosphate buffer (pH 7.8). The photo-induced

reactions were performed using fluorescent lamps

(20 W). The total volume of the reactant mixture was

5 mL and the concentrations of riboflavin,

methionine and NBT were 1.33 £ 1025, 4.46 £

1025 and 8.15 £ 1028 M, respectively and it was

illuminated at 258C for 40 min. The photochemically

reduced riboflavin generated O2
z– which reduced NBT

to form blue formazan. The unilluminated reaction

mixture was used as a blank. The absorbance was

measured at 560 nm. Di-DMP, Di-DIP and Di-DTP

were added to the reaction mixture, in which O2
z– was

scavenged, thereby inhibiting NBT reduction.

Decreased absorbance of the reaction mixture

indicates increased superoxide anion scavenging

activity. The inhibition percentage of superoxide

anion generation was calculated by using the

following formula:

O·2
2 scavenging effect ð%Þ ¼

AC 2 AS

AC

� �
£ 100

where AC is the absorbance of the control and AS is

the absorbance of Di-DMP, Di-DIP and Di-DTP or

standards [47].

Statistical analysis

The other analyses were performed in triplicate. The

data were recorded as mean ^ standard deviation and

analysed by SPSS (version 11.5 for Windows 2000,

SPSS Inc.). One-way analysis of variance was

performed by ANOVA procedures. Significant differ-

ences between means were determined by Duncan’s

Multiple Range tests. P , 0.05 was regarded as

significant and p , 0.01 as very significant.

Results and discussion

Di-DMP, Di-DIP and Di-DTP were synthesized by

the procedure described by Ogata et al. [29,30].

Reaction of monomeric phenol derivatives 2,6-

dimethylphenol, 2,6-diisopropylphenol and 2,6-di-t-

butylphenol with catalytic CuCl(OH). TMEDA and

then with Na2S2O4 gave the required dimeric phenol

derivatives in Di-DMP, Di-DIP and Di-DTP in high

yields (Figures 1 and 2). The obtained compounds

were purified by crystallization to analytical grade

(above 98%).

It has been reported in many studies, that natural

antioxidants were closely related to their biofunction-

alities, such as the reduction of chronic diseases like

DNA damage, mutagenesis, carcinogenesis and

inhibition of pathogenic bacterial growth which is

often associated with the termination of free radical

propagation in biological systems [48,49]. Antioxidant

capacity is widely used as a parameter for medicinal

bioactive components. In this study, the antioxidant

activity of Di-DMP, Di-DIP and Di-DTP was

compared to BHA, BHT a-tocopherol and its water-

soluble analogue trolox. a-Tocopherol is a biological

lipid antioxidant that prevents the formation of free

radicals from lipid peroxidation [50]. The antioxidant

activity of Di-DMP, Di-DIP, Di-DTP, BHA, BHT, a-

tocopherol and trolox were evaluated in a series of

in vitro tests: 1, 1-diphenyl-2-picryl-hydrazyl free

radical scavenging, ferric thiocyanate method, redu-

cing power, scavenging of superoxide anion radical-

generated non-enzymatic system, hydrogen peroxide

scavenging and metal chelating activities.

Total antioxidant activity determination in a linoleic acid

emulsion by the ferric thiocyanate method

Lipid peroxidation involves a series of free radical-

mediated chain reactions and is also associated with

several types of biological damage. The role of free

radicals and ROS is becoming increasingly recognized

in the pathogenesis of many human diseases, includ-

ing cancer, aging, and atherosclerosis [32,51].

The thiocyanate method measures the amount of

peroxide, which is the primary product of lipid

oxidation, produced during the initial stages of

oxidation. Total antioxidant activity of Di-DMP, Di-

DIP, Di-DTP, BHA, BHT, a-tocopherol and trolox

was determined by the ferric thiocyanate method in

the linoleic acid system; Di-DMP, Di-DIP, Di-DTP

and standard compounds exhibited effective antiox-

idant activity. The effects of the same concentration

(45mg/mL) of Di-DMP, Di-DIP and Di-DTP on lipid

peroxidation of linoleic acid emulsion are shown

in Figure 3 and were found to be 97.6, 95.2 and

98.8%, respectively, and their activities were greater

than that of a-tocopherol (84.6%) and similar to

trolox (95.6%) at this concentration.
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Total reductive capability using the potassium ferricyanide

reduction method

Antioxidants can be considered as reductants, and

inactivation of oxidants by reductants are redox

reactions where one reaction species is reduced at

the expense of the oxidation of the other. The presence

of reductants such as antioxidant substances in the

antioxidant samples causes reduction of the Fe3þ/-

ferricyanide complex to Fe2þ which can be monitored

by measuring the formation of Perl’s Prussian blue at

700 nm [52,53]. In this assay, the yellow colour of the

test solution changes to various shades of green and

blue depending on the reducing power of antioxidant

samples. The reducing capacity of a compound may

serve as a significant indicator of its potential

antioxidant activity.

Figure 4 shows the reducing power of Di-DMP, Di-

DIP, Di-DTP and standards (BHA, BHT, a-toco-

pherol and trolox) using the potassium ferricyanide

reduction method. For the measurements of the

reductive ability, the Fe3þ-Fe2þ transformation was

investigated in the presence of Di-DMP, Di-DIP and

Di-DTP using the method of Oyaizu [34].The

reducing power of Di-DMP, Di-DIP, Di-DTP, BHA,

BHT, a-tocopherol and trolox increased steadily with

Figure 1. The structures of DMP, DIP and DTP and their synthesed dimeric compounds Di-DMP, Di-DIP and Di-DTP.

Figure 2. The synthesit scheme for preparation of dimeric phenols from their monomeric forms.
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increasing concentration of sample. At different

concentrations (15–45mg/mL), Di-DMP, Di-DIP

and Di-DTP showed an effective reducing power

(Figure 4) and these differences were statistically

significant ( p , 0.05). The reducing power of Di-

DMP, Di-DIP and Di-DTP and the standard

compounds exhibited the following order: BHA <
BHT . Di-DIP . a-tocopherol < Di-DMP . Di-

DTP . trolox. The results on reducing power

demonstrate the electron donor properties of Di-

DMP, Di-DIP, Di-DTP thereby neutralizing free

radicals by forming stable products. The outcome of

the reducing reaction is to terminate the radical chain

reactions that may otherwise be very damaging.

Ferrous ion (Fe21) chelating capacity

Ferrous ion (Fe2þ) chelation may lead to important

antioxidative effects by retarding metal-catalysed

oxidation. Ferrous ion chelating activities of Di-

DMP, Di-DIP, Di-DTP, BHA, BHT, a-tocopherol

and trolox are shown in Table I. The effective ferrous

ions chelator may also afford protection against

oxidative damage by removing iron (Fe2þ) that may

otherwise participate in HO· generating Fenton type

reactions. The chelating effect of ferrous ions by Di-

DMP, Di-DIP, Di-DTP and standards was determined

according to the method of Dinis [36]. Among the

transition metals, iron is known as the most important

lipid oxidation pro-oxidant due to its high reactivity.

Figure 3. Total antioxidant activities of Di-DMP, Di-DIP, Di-DTP, BHA, BHT, a-tocopherol and trolox at the same concentration

(45mg/mL) in the linoleic acid emulsion system by the ferric thiocyanate method.

Figure 4. Total reductive potential of different concentrations

(15–30mg/mL) of Di-DMP, Di-DIP, Di-DTP, BHA, BHT, a-

tocopherol and trolox using the Fe3þ-Fe2þ transformation.

Table I. Comparison of hydrogen peroxide (H2O2) scavenging

activity, ferrous ion (Fe2þ) chelating activity and superoxide anion

radicals (O2
z–) scavenging activity of Di-DMP, Di-DIP, Di-DTP and

the standard antioxidants BHA, BHT, a-tocopherol and trolox at

concentration of 15mg/mL.

H2O2

scavenging

activity (%)

Ferrous ion

chelating

activity (%)

Superoxide

scavenging

activity (%)

BHA 36.4 ^ 3.5 69.9 ^ 7.5 75.3 ^ 6.5

BHT 34.3 ^ 4.1 60.0 ^ 9.3 70.2 ^ 7.1

a-Tocopherol 39.3 ^ 2.9 31.3 ^ 5.5 22.2 ^ 3.3

Trolox 25.5 ^ 3.3 45.2 ^ 6.2 16.0 ^ 1.9

Di-DMP 38.2 ^ 7.8 63.6 ^ 4.7 67.4 ^ 5.2

Di-DIP 30.3 ^ 4.8 61.3 ^ 4.2 33.7 ^ 5.2

Di-DTP 20.4 ^ 3.9 58.2 ^ 2.3 33.1 ^ 6.3
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Ferric (Fe3þ) ions also produce radicals from

peroxides although the rate is tenfold less than that of

ferrous (Fe2þ) ions [55]. Ferrous ions (Fe2þ) are the

most powerful pro-oxidant among the various species

of metal ions [55,56]. Minimizing ferrous ions (Fe2þ)

may afford protection against oxidative damage by

inhibiting production of ROS and lipid peroxidation.

Ferrozine can quantitatively form complexes with

ferrous ions (Fe2þ). In the presence of chelating agents,

the complex formation is disrupted, resulting in a

decrease in the red colour of the complex. Measure-

ment of colour reduction therefore allows estimation of

the metal chelating activity of the co-existing chelator;

lower absorbance indicates higher metal chelating

activity. In this assay, Di-DMP, Di-DIP and Di-DTP

interfered with the formation of the ferrous and

ferrozine complex, suggesting that they have chelating

activity and are able to capture ferrous ion before

ferrozine. It has been reported that compounds with

structures containing a -OH functional group, a

favourable structure– function configuration, can

show metal chelation activity [57,58].

The difference between all the Di-DMP, Di-DIP

and Di-DTP concentrations and the control was

statistically significant ( p , 0.01). In addition, Di-

DMP, Di-DIP and Di-DTP exhibited 63.6 ^ 4.7,

61.3 ^ 4.2 and 58.2 ^ 2.3% chelation of ferrous ion

at 15mg/mL concentration, respectively. On the other

hand, the percentages of metal chelating capacity of

the same concentration of BHA, BHT, a-tocopherol

and trolox were found to be 69.9 ^ 7.5, 60.0 ^ 9.3,

31.3 ^ 5.5and 45.2 ^ 6.2%, respectively. The metal

scavenging effect the compounds decreased in the

order of BHA . Di-DMP . Di-DIP < BHT < Di-

DTP . trolox . a-tocopherol.

Metal chelating capacity was significant since it

reduced the concentration of the catalysing transition

metal in lipid peroxidation. It was reported that

chelating agents are effective antioxidants because

they reduce the redox potential thereby stabilizing the

oxidized form of the metal ion. The data in Table I

reveals that Di-DMP, Di-DIP and Di-DTP have a

marked capacity for iron binding, suggesting that their

main action as peroxidation protectors may be related

to their iron binding capacity.

Hydrogen peroxide scavenging activity

Hydrogen peroxide can cross membranes and may

slowly oxidize a number of compounds and it can be

formed in vivo by many oxidizing enzymes such as

superoxide dismutase. The ability of Di-DMP, Di-

DIP and Di-DTP to scavenge hydrogen peroxide was

determined according to the method of Ruch and co-

workers [39] (Table I) and compared with that of

BHA, BHT, a -tocopherol and trolox as standards. At

15mg/mL concentration, Di-DMP, Di-DIP and

Di-DTP exhibited 38.2 ^ 7.8, 30.3 ^ 4.8 and

20.4 ^ 3.9% scavenging activity whereas, BHA,

BHT, a-tocopherol and trolox exhibited 36.4 ^ 3.5,

34.3 ^ 4.1, 39.3 ^ 2.9 and 25.5 ^ 3.3% activity at

the same concentration, respectively. Hydrogen

peroxide itself is not very reactive; however it can

sometimes be toxic to the cell because it may give rise

to the hydroxyl radical in the cell. Addition of

hydrogen peroxide to cells in culture can lead to

transition metal ion-dependent OH radicals mediated

oxidative DNA damage. Levels of hydrogen peroxide

at or below about 20–50mg in the cell seem to have

limited cytotoxicity to many cell types. Thus,

removing hydrogen peroxide as well as superoxide

anion is very important for protection of pharmaceu-

tical and food systems.

Radical scavenging activity

Radical scavenging activity is very important due to the

deleterious role of free radicals in foods and in

biological systems. Excessive formation of free radicals

accelerates the oxidation of lipids in foods and

decreases food quality and consumer acceptance

[59]. Diverse methods are currently used to assess

the antioxidant activity of plant phenolic compounds.

Chemical assays are based on the ability to scavenge

synthetic free radicals, using a variety of radical-

generating systems and methods for detection of the

oxidation end-point. ABTS or DPPH radical-scaven-

ging methods are common spectrophotometric pro-

cedures for determining the antioxidant capacities of

components. These chromogens (the violet DPPH

radical and the blue oblique green ABTS radical

cation) are easy to use, have a high sensitivity, and allow

for rapid analysis of the antioxidant activity of a large

number of samples. These assays have been applied to

determine the antioxidant activity of food, wine and

plant extracts and pure components [60–62].

DPPH has been widely used to evaluate the free

radical scavenging effectiveness of various antioxidant

substances [63,64]. In the DPPH assay, the antiox-

idants are able to reduce the stable radical DPPH to

the yellow coloured diphenyl-picrylhydrazine. The

method is based on the reduction of an alcoholic

DPPH solution in the presence of a hydrogen-

donating antioxidant due to the formation of the

non-radical form DPPH-H by the reaction. DPPH is

usually used as a reagent to evaluate free radical

scavenging activity of antioxidants [34]. DPPH is a

stable free radical and accepts an electron or hydrogen

radical to become a stable diamagnetic molecule [65].

With this method it was possible to determine the

radical scavenging power of an antioxidant by

measuring the decrease in absorbance of DPPH· at

517 nm, resulting in a colour change from purple to

yellow due to scavenging by an antioxidant through

donation of hydrogen to form a stable DPPH·

molecule [66]. Figure 5 illustrates a significant
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decrease ( p , 0.01) in the concentration of the DPPH

radical due to the scavenging ability of Di-DMP,

Di-DIP, Di-DTP and standards which decreased

in the order of Di-DMP . Di-DIP . BHA . a-

tocopherol . BHT . Di-DTP . trolox and were

75.5, 71.9, 67.8, 64.9, 62.5, 45.0 and 29.4%, at a

concentration of 45mg/mL, respectively. Free radical

scavenging activity of these compounds also increased

with increasing concentration.

Generation of the ABTS radical cation forms the

basis of one of the spectrophotometric methods that

have been applied to the measurement of the total

antioxidant activity of solutions of pure substances,

aqueous mixtures and beverages [54]. A more

appropriate format for the assay is a decolorization

technique in that the radical is generated directly in a

stable form prior to reaction with putative antiox-

idants. The improved technique for the generation of

ABTSzþ described here involves the direct production

of the blue/green ABTSzþ chromophore through the

reaction between ABTS and potassium persulfate.

All the tested compounds exhibited effective radical

cation scavenging activity. As can seen from Figure 6,

Di-DMP, Di-DIP and Di-DTP had effective ABTSzþ

radical scavengingactivity ina concentration-dependent

manner (15–45mg/mL) which was significant

(p , 0.01) and decreased in the order: Di-DIP <
BHA < BHT . Di-DMP . a-tocopherol Di-DIP.

trolox, which were 100, 100, 97.8, 96.9, 86.3, and

4.4%, at a concentration of 45mg/mL, respectively.

Superoxide anions are a precursor to active free

radicals that have the potential to react with biological

macromolecules and thereby induce tissue damage

[55]. Also, they have been implicated in several

pathophysiological processes due to their transform-

ation into more reactive species such as hydroxyl

radical that initiate lipid peroxidation. Superoxide has

also been observed to directly initiate lipid peroxi-

dation [67]. It has also been reported that the

antioxidant properties of some flavonoids are effective

mainly via scavenging of superoxide anion radical

[68,69]. Superoxide anion plays an important role in

the formation of other ROS such as hydrogen peroxide,

hydroxyl radical, and singlet oxygen, which induce

oxidative damage in lipids, proteins, and DNA [70].

Also, superoxide anion is an oxygen-centred radical

with selective reactivity. These species are produced by

a number of enzyme systems in auto-oxidation

reactions and by non-enzymatic electron transfers

that univalently reduce molecular oxygen. It can also

reduce certain iron complexes such as cytochrome c.

Superoxide radical isnormally initially formed,and its

effects can be magnified because it produces other kinds

of free radicals and oxidizing agents [71]. Superoxide

anions derived from dissolved oxygen by riboflavin/

methionine/illumination system can reduce NBT. In

this method, superoxide anion reduces the yellow dye

(NBT2þ) to produce the blue formazan which is

measured spectrophotometrically at 560 nm. Antiox-

idants are able to inhibit the blue NBT formation

[72,73]. The decrease of absorbance at 560 nm in the

presence of antioxidants indicates the consumption of

superoxide anion in the reaction mixture. Table I shows

the percentage inhibition of superoxide radical gener-

ation in the presence of 15mg/mL concentration of Di-

DMP, Di-DIP and Di-DTP which was found to be

67.4 ^ 5.2, 33.7 ^ 5.2 and 33.1 ^ 6.3%, respectively.

At the same concentration BHA, BHT, a-tocopherol

and troloxexhibited75.3 ^ 6.5, 70.2 ^ 7.1,22.2 ^ 3.3

and 16.0 ^ 1.9% superoxide anion radical scavenging

activity, respectively.

Conclusion

Di-DMP, Di-DIP and Di-DTP were found to be

effective antioxidants in different in vitro assays

including reducing power, DPPH radical, ABTS

radical and superoxide anion radical scavenging,

hydrogen peroxide scavenging and metal chelating

activities when compared to the standard antioxidants

a-BHA, BHT, tocopherol (a natural antioxidant) and

trolox, which is a water-soluble analogue of toco-

pherol. The new compounds had better antioxidant

Figure 5. DPPH· free radical scavenging activity of Di-DMP, Di-

DIP and Di-DTP, a-tocopherol and trolox.

Figure 6. ABTSzþ radical scavenging activity of Di-DMP, Di-DIP

and Di-DTP, a-tocopherol and trolox.
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and radical scavenging activity than the used stan-

dards. These dimeric antioxidants can be potentially

used for minimizing or preventing lipid oxidation in

food products, retarding the formation of toxic

oxidation products, maintaining nutritional quality

and prolonging the shelf life of foods and

pharmaceuticals.
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Enein HY. A study on the in vitro antioxidant activity of juniper

(Juniperus communis L.) seeds extracts. Anal Lett 2006;39:

47–65.

[39] Ruch RJ, Cheng SJ, Klaunig JE. Prevention of cytotoxicity and

inhibition of intracellular communication by antioxidant
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[42] Gülçin İ. The antioxidant and radical scavenging activities of

black pepper (Piper nigrum) seeds. Int J Food Sci Nut 2005;56:

491–499.
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